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Neurons that produce gonadotropin-releasing hormone
(GnRH) drive the reproductive axis, but the molecular
and cellular mechanisms by which hormonal and
environmental signals regulate GnRH secretion remain
poorly understood. Kisspeptins are products of the Kiss1
gene, and the interaction of kisspeptin and its receptor
GPR54 plays a crucial role in governing the onset of
puberty and adult reproductive function. This review
discusses the latest ideas about kisspeptin–GPR54 sig-
naling in the neuroendocrine regulation of reproduction,
with special emphasis on the role of Kiss1 and kisspeptin
in the negative and positive feedback control of gonado-
tropin secretion by sex steroids, timing of puberty onset,
sexual differentiation of the brain and photoperiodic
regulation of seasonal reproduction.

Discovery, structure, and localization of GPR54 and
kisspeptins
In 1999, the gene for an orphan G-protein-coupled mem-
brane receptor, termed GPR54, was discovered in the rat
and subsequently identified in the human genome [1–3].
TheGPR54 gene is expressed in several peripheral tissues
(placenta, pancreas, kidney, testis and pituitary) and the
brain, most notably the hypothalamus, preoptic area
(POA), midbrain, hippocampus, amygdala and medulla
[1–3]. Less commonly known as AXOR12 or hOT7T175,
the GPR54 protein is about 40% homologous to the galanin
family of receptors but does not bind either galanin or
galanin-like peptide (GALP) [2].

In 2001, it was discovered that kisspeptins, encoded by
the Kiss1 gene, represent natural high-affinity ligands for
GPR54 [1,3,4]. Kiss1 encodes a 145 amino acid protein,
which is proteolytically processed to produce a 54 amino
acid peptide called kisspeptin-54 [5]. Kisspeptin-54 has
also been termed ‘metastin’, based on early work identify-
ing Kiss1 as a cancer metastasis suppressor gene [6,7]. In
addition to kisspeptin-54, several other smaller peptide
fragments derived from the precursor protein were ident-
ified (kisspeptin-14, -13, -10), which all share a distinct
structural RF-amide motif (Arg-Phe-NH2) in their C-term-
inal region. Although each of these kisspeptin peptides can
bind and activate GPR54 with similar efficacy [1,3,4], their
relative importance in vivo remains to be determined.
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In rodents, sheep and primates, Kiss1 mRNA has been
detected by either in situ hybridization or RT–PCR in
discrete regions of the forebrain, including the arcuate
nucleus (ARC), the anteroventral periventricular nucleus
(AVPV) and the anterodorsal preoptic nucleus (APN), as
well as in the bed nucleus of the stria terminalis and
amygdala [3,8–10]. In a similar way to GPR54, Kiss1 is
also expressed in several peripheral tissues, most notably,
the placenta, ovary, testis, pancreas and liver [1–4].

The relationship between the kisspeptin–GPR54 system
and reproduction
In 2003, several groups reported that humans and mice
with either spontaneous or genetically targeted mutations
in the GPR54 gene display striking impairments in repro-
ductive function, including a failure of pubertal develop-
ment, low levels of sex steroids, impaired gametogenesis
and a lack of estrous or menstrual cyclicity [11–13].
Mutations and deletions ofGPR54 are also associated with
a severe deficiency in gonadotropin (LH and FSH)
secretion, which was ultimately traced to diminished
secretion of gonadotropin-releasing hormone (GnRH)
[13–15]; similar impairments have recently been reported
for Kiss1 knockout (KO) mice [16,17]. GnRH neurons are
the final common pathway through which the brain
regulates the secretion of pituitary gonadotropins, and
hence, all of reproduction. Emerging evidence supports
the idea that kisspeptin–GPR54 signaling directly
regulates GnRH secretion. In rodents, sheep and primates
(including humans), exogenous kisspeptin treatment eli-
cits rapid increases in plasma levels of LH and FSH
[8,9,15,18–22]. Although GPR54 is expressed both in the
pituitary and GnRH neurons [9,15], evidence suggests that
the stimulation of gonadotropin secretion by kisspeptin
reflects direct activation of GnRH neurons and not pitu-
itary gonadotropes. First, in rodents and monkeys, the
kisspeptin-induced increase in gonadotropin secretion
can be blocked with GnRH antagonists [8,9,20,22]. Second,
in rodents, kisspeptin induces Fos expression and pro-
longed firing of action potentials in GnRH neurons
[9,23,24]. Third, in sheep, kisspeptin infusions increase
the concentration of GnRH in the hypothalamo–pituitary
portal circulation [15]. Finally, in all species examined so
far, GnRH neurons express GPR54 [9,15,24,25]. It is also
noteworthy that kisspeptin administration cannot induce
d. doi:10.1016/j.tins.2007.08.001
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LH secretion or nuclear Fos production in GnRH neurons
in GPR54 KO mice [15,23], suggesting that the effects of
kisspeptin on the GnRH axis are mediated specifically by
GPR54 (and not another receptor).

Kisspeptin–GPR54 signaling is clearly essential for
maintaining GnRH secretory activity, but whether gona-
dotropes are also targets for kisspeptin action remains
unresolved. GPR54 is expressed in the human pituitary
[1,3], and kisspeptin stimulates gonadotropin release in
vitro from cultured rat, ovine and bovine primary pituitary
cells [21,26,27]. Notwithstanding, other studies have
shown no apparent effect of kisspeptins on in vitro LH
or FSH secretion in cultured primary rat pituitary cells or
anterior pituitary fragments [20,28]. The explanation for
these conflicting findings is unclear and might reflect
differences in experimental design; however, recent stu-
dies in sheep indicate that GnRH is required for the
stimulatory effect of kisspeptin on gonadotropin secretion
in vivo, bolstering the argument that GnRH neurons are
the primary targets for the action of kisspeptin in the
neuroendocrine reproductive axis.

Steroidal regulation of the Kiss1 system: implications
for positive and negative feedback
The secretion of GnRH is regulated by sex steroids (i.e.
positive and negative feedback), but the cellular and mol-
ecular mechanism subserving this regulation remains
unclear. GnRH neurons do not express the receptors
thought to mediate steroidal feedback effects [neither
estrogen receptor a (ERa) nor the androgen receptor
(AR)] [29], suggesting that other steroid-sensitive neurons
Figure 1. Model of kisspeptin–GPR54 signaling in the brains of male and female roden
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‘upstream’ of GnRH neurons receive and transmit sex
steroid signals to the reproductive axis. Given the potent
stimulatory effects of kisspeptin on GnRH secretion, Kiss1
neurons are plausible candidates to be these ‘upstream’
steroid-sensitive neurons. Indeed, Kiss1 neurons in the
forebrain are direct targets of sex steroids: in rodents,
almost all hypothalamic Kiss1 neurons express ERa and
AR, and Kiss1 mRNA is strongly regulated by both estra-
diol and testosterone [30,31]. Similarly, in sheep, most
hypothalamic Kiss1 cells express ERa, as well as the
progesterone receptor [32]. The co-expression of Kiss1
and the progesterone receptor has not been addressed in
rodents, whereas the expression of AR in Kiss1 neurons
has not been studied in any species except the mouse [31].
Of note, ERb is also expressed in about 30% of hypothala-
mic Kiss1 neurons; however, ERßKO mice show no dis-
cernable impairments in GnRH/LH secretion and display
appropriate regulation of Kiss1 expression in response to
estrogen [30]. Thus, the functional significance of ERb in
Kiss1 neurons is unclear, although it is possible that other
genes coexpressed in someKiss1 neurons (e.g. genes encod-
ing dynorphin and neurokinin B) might be regulated
through ERb.

The effects of sex steroids on Kiss1 gene expression in
the brain are region-specific, at least in rodents. In the
ARC, estrogen and testosterone inhibit the expression of
Kiss1, whereas in the AVPV, these same steroids stimulate
Kiss1 expression (Figure 1) [30,31,33,34]. Similarly, in
gonadectomized rodents (i.e. having very low sex steroids),
levels of Kiss1 mRNA are increased in the ARC and
decreased in the AVPV [30,31,33,34]. The differential
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effects of estrogen and testosterone on Kiss1 gene expres-
sion in the ARC and AVPV suggest that Kiss1 neurons
might be involved in the steroid-mediated positive and
negative feedback control of GnRH neurons (Figure 1);
however, the molecular mechanism for this differential
regulation of Kiss1 by sex steroids is unknown.

In rodents, sheep and primates, the ARC comprises the
neural elements that mediate the negative feedback regu-
lation of reproduction [35–37], and Kiss1 neurons in this
regionmight provide the cellularmechanism orchestrating
this phenomenon. Similar to findings in castrated rodents,
gonadectomized sheep andmonkeys (and post-menopausal
women having low plasma levels of estrogen) also show
elevated Kiss1 expression in the ARC (or its homologue in
the primate, the infundibular nucleus) [32,38,39], correlat-
ing with increased LH secretion. Notably, this ‘disinhibi-
tion’ or release from sex-steroid-dependent negative
feedback control of gonadotropin secretion in gonadecto-
mized animals is not observed in gonadectomized GPR54
KO mice. Although Kiss1 gene expression in the ARC of
GPR54 KO mice increases after gonadectomy, as in wild-
type mice, GPR54 KO mice show no post-castration rise in
LH. Collectively, these findings support the contention
that steroid-mediated inhibition of kisspeptin–GPR54 sig-
naling arising from ARC Kiss1 neurons mediates the nega-
tive feedback effects of sex steroids on GnRH secretion
(Figure 1). However, proof of the validity of this model
awaits further studies establishing direct connections be-
tween ARCKiss1 neurons andGnRHneurons and showing
that targeted deletions of Kiss1 in ARC cells disrupt nega-
tive feedback.

In contrast to the classical negative feedback effects of
sex steroids on GnRH/LH secretion that occur in both
sexes, estrogen (above a certain plasma threshold) can also
act in females to exert a so-called ’positive feedback’ effect,
which stimulates GnRH/LH secretion and triggers ovu-
lation. In rodents, the AVPV is the anatomical nodal point
for generating the preovulatory GnRH/LH surge [40–42].
Lesions of the AVPV block the spontaneous and steroid-
induced surge [43–46], and placement of estrogen into the
AVPV (but not other areas) elicits an LH surge [47]. A
compelling line of evidence suggests that Kiss1 neurons in
the AVPV drive the sexually differentiated estrogen-
induced GnRH/LH surge in rodents. First, kisspeptin is
a potent secretagogue for GnRH, and GnRH neurons
express GPR54 [8,9,20,24,48]. Second, Kiss1 expression
in the AVPV increases at the time of the LH surge, coinci-
dent with increased coexpression of the transcription fac-
tor Fos in Kiss1 neurons [34]. Third, central infusion of
kisspeptin antiserum blocks the spontaneous and estro-
gen-induced LH surges in female rats [49]. Fourth, ERa is
thought to mediate the stimulatory effects of estrogen on
the surge mechanism [50], and almost all Kiss1 neurons in
the AVPV express ERa [30,31]. Finally, the GnRH/LH
surge is sexually differentiated, and only females are
capable of displaying a surge in response to estrogen
[51–55]. Similarly, only females possess significant num-
bers ofKiss1 cells in the AVPV [33]; even if adult males are
treated with high levels of estrogen (or testosterone), they
display few Kiss1 neurons in this region. Thus, Kiss1
neurons in the AVPV of female rodents probably serve
www.sciencedirect.com
as the cellular conduit for integrating and relaying estro-
gen signals to GnRH neurons to generate the sexually
differentiated preovulatory LH surge (Figure 1). However,
the interaction between Kiss1 neurons in the AVPV and
other factors that regulate the GnRH/LH surge (e.g. cir-
cadian signals and progesterone) remains unexplored.
Moreover, although it has become clear that kisspeptin–
GPR54 signaling provides an important element of the
neural surge-generating mechanism in rodents, it is not
the entire story. Recent data indicate that female GPR54
KOmice retain the ability to produce a GnRH/LH surge in
response to estrogen, suggesting possible redundancy or
developmental compensation in the circuitry that gener-
ates the positive feedback event in the murine brain.
This possibility for redundancy of GnRH regulation is
echoed in the finding that GPR54 KO mice have plasma
gonadotropin levels that, although exceedingly low, are not
completely absent (although these gonadotropin concen-
trations are often at or near the low level of detection of the
radioimmunoassay, precluding a definitive interpretation
of their functionality).

In sheep, the population ofKiss1 neurons in the AVPV is
relatively small (containing only a few Kiss1 cells relative
to the ARC) and is not regulated by sex steroids [32].
Furthermore, in ewes, the mediobasal hypothalamus (con-
taining the ventromedial nucleus [VMN] and ARC), not the
POA, is believed to contain the circuitry necessary for
mediating the positive feedback effects of estrogen on
GnRH neurons [56–59]. It is perhaps not surprising then
that the expression of Kiss1 in the ovine ARC is regulated
by sex steroids and markedly increased before and during
the preovulatory LH surge [32,60]. Thus, in the ewe, both
positive and negative feedback effects of sex steroids might
be mediated by Kiss1 neurons in the medial basal hypo-
thalamus (i.e. the ARC). Whether these positive and nega-
tive feedback effects are mediated by the same ARC Kiss1
neurons or by separate subpopulations ofKiss1 cells within
the ARC warrants additional study. Similar to sheep, in
primates (including humans), the distribution of Kiss1
neurons is concentrated in the medial basal hypothalamus
and infundibular nucleus (the ARC homologue) [22,38].
However, the role, if any, of the infundibular Kiss1
system in generating the preovulatory surge in primates
is unexplored.

Sexual differentiation and the Kiss1 system
In mammals, the brain is anatomically and physiologically
differentiated between the sexes [55,61,62]. This phenom-
enon develops during the perinatal critical period [55]
and reflects the organizational effects of perinatal sex
steroids on the developing brain. In rodents and sheep,
one important sexually differentiated trait is the ability
of adult females, but not adult males, to display an estro-
gen-induced, circadian-dependent GnRH/LH surge (i.e.
positive feedback) [55,63,64]. In male rodents, exposure
to testosterone or its estrogenic metabolites during peri-
natal life (or during prenatal life in the sheep) permanently
alters the circuitry in the developing forebrain [62], avert-
ing its ability as an adult to generate a GnRH/LH surge in
response to estrogen [62]. Because the brain of the normal
female is not exposed to testosterone during the perinatal
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period, it retains (or develops) the circuitry necessary to
generate a GnRH/LH surge in adulthood [42,55]. Male
rodents that are castrated during the critical period can
produce a GnRH/LH surge as adults, just like normal
females [55,63]; similarly, females that are exposed to
testosterone during the perinatal period lose their ability
to generate GnRH/LH surges as adults [55,63]. However,
the population of forebrain neurons that drives the GnRH/
LH surge, which develops in females and regresses in
males, has not been fully elucidated.

Estrogen-sensitive cells in the AVPV are thought to play
a key role in generating the GnRH/LH surge. Neuronal
populations in the AVPV are sexually differentiated, and
females possess more neurons overall than do males, as
well as greater numbers of tyrosine hydroxylase (TH-)con-
taining (dopaminergic) cells and GABA/glutamate cells
[42,65,66]. Kiss1 neurons in the AVPV are also sexually
differentiated, and adult females possess more Kiss1 cells
than do males (Figure 1) [33,67]. In rats, the number of
Kiss1 neurons in the AVPV of adult females is as much as
25 times greater than in males [33], and similar sex
differences in kisspeptin protein levels in the AVPV [as
determined by immunocytochemistry (ICC)] have also
been reported in the mouse [67]. Although sex steroids
in adulthood induce Kiss1 gene expression in the AVPV
[34,68], the gender difference in AVPVKiss1 neurons is not
attributable to sex differences in circulating levels of tes-
tosterone or estrogen in adulthood. Gonadectomized male
and female rats receiving identical sex steroid treatments
as adults still display sex differences inKiss1 expression in
the AVPV [33]. By contrast, the perinatal hormonal milieu
affects the sex difference in Kiss1 neurons; female rats
treated perinatally with androgen do not exhibit a GnRH/
LH surge and possess very few Kiss1 neurons in the AVPV
as adults, similar to adult males [33]. These observations
indicate that the Kiss1 system in the AVPV is sexually
differentiated early in development under the influence of
sex steroids, thereby producing robust gender differences
in Kiss1 expression in the AVPV in adulthood (and prob-
ably accounting for the gender-specific ability of female
rodents to produce an LH surge). It remains to be deter-
mined whether these developmental effects of sex steroids
on Kiss1 neurons in the AVPV are mediated by either AR-
or ER-dependent pathways and whether the sexually
dimorphic Kiss1 population in the AVPV is the same set
of cells as other sexually dimorphic neurons in the region,
such as GABA/glutamate [65] or TH [42,55]. (For example,
in the rat, the sexually dimorphic Kiss1 and TH popu-
lations in the AVPV appear to represent two separate
sexually differentiated populations [33].)

In contrast to the AVPV, the ARC displays no gender-
based differences in either the number of Kiss1 neurons or
the content ofKiss1mRNA per cell. Adult male and female
rats display similar levels of enhanced Kiss1 expression in
the ARC after gonadectomy and similarly reduced Kiss1
expression after sex hormone replacement (testosterone or
estrogen) [33]. Likewise, in mice, kisspeptin immunoreac-
tivity in the ARC is similar between gonad-intact adult
males and females [67]. We have suggested thatKiss1 cells
in the ARC provide tonic stimulatory input to GnRH
neurons and relay the negative feedback effects of sex
www.sciencedirect.com
steroids to GnRH secretion, in both sexes [69]. So, it is
not surprising that, in rodents, there is no sexual differ-
entiation of Kiss1 neurons in the ARC. Sex differences in
Kiss1 expression in the ARC of other species have yet to be
examined.

Recent findings indicate that the process of sexual
differentiation is itself dependent upon functional kisspep-
tin–GPR54 signaling. Specifically, sexual differentiation
towards the male phenotype is impaired in the genotypic
male GPR54 KO mouse [23]: despite testosterone replace-
ment in adulthood, male GPR54 KO mice display female-
like characteristics in several sexually dimorphic traits,
including olfactory partner preference, the number of TH-
and Kiss1-expressing neurons in the AVPV, and the num-
ber of motoneurons in the spinal cord [23]. These findings
indicate that kisspeptin–GPR54 signaling during the peri-
natal period is essential for proper sexual differentiation in
normal males, probably through direct stimulation of the
GnRH–LH–testosterone axis during the developmental
’critical period’. Although a role of peripheral kisspep-
tin–GPR54 signaling within the perinatal testes is also
conceivable, the foregoing observations suggest that cen-
tral kisspeptin–GPR54 signaling probably regulates
GnRH secretion during early postnatal life, just as it does
in adulthood.

Kisspeptin signaling and puberty
In mammals, activation of GnRH neurons is the key
event gating the onset of puberty; however, the mechan-
isms that trigger GnRH secretion at puberty remain one
of the enigmas of modern science [70]. Intriguingly,
sexual maturation is impaired in humans and mice
with targeted deletions or spontaneous mutations in
the GPR54 gene [11–13], suggesting that kisspeptin–
GPR54 signaling is essential for pubertal maturation.
Moreover, exogenous kisspeptin administered to prepu-
bertal rodents and monkeys initiates various aspects of
precocious puberty (such as LH secretion or vaginal
opening) [20,22,24,71]. Similarly, neural Kiss1 gene
expression increases in both male and female rats, mice
and monkeys from pre- to post-puberty [10,22,24]; how-
ever, the specific Kiss1 population(s) (ARC versus AVPV)
that changes with puberty is equivocal and might reflect
species-specific mechanisms that differ between primates
and rodents [72,73]. Regardless, changes in the activity
of Kiss1 neurons appear to represent a seminal and
perhaps common event in the timing of puberty in many
species.

Whether changes in the expression/activity of GPR54
are also involved in pubertal maturation is less clear:
GPR54 expression increases from pre- to post-puberty in
rats of both sexes and in female monkeys [10,22], but not in
male mice and monkeys [22,24]. In mice, the number of
kisspeptin-containing fibers that appose GnRH neurons
increases at puberty [67], suggesting that pubertal matu-
ration might also include the completion of developmental
circuitry coupling Kiss1 and GnRH neurons. Collectively,
these findings indicate that hypothalamic-derived kisspep-
tin–GPR54–GnRH signaling is intimately involved in the
mechanism(s) that initiate puberty, but precisely how this
signaling is triggered remains a mystery.



508 Review TRENDS in Neurosciences Vol.30 No.10
The role of Kiss1 neurons in seasonal breeding: effects
of photoperiod and melatonin
Many mammals living in non-equatorial zones have mech-
anisms that synchronize reproduction with the external
environment, thereby optimizing reproductive success.
Most seasonal breeders modulate reproductive activity
by responding to photoperiodic cues (i.e. day length)
[74,75]. In mammals, photoperiodic information is trans-
mitted from the retina to the circadian oscillator in the
suprachiasmatic nucleus (SCN), which in turn regulates
the secretion of melatonin from the pineal gland via a
multisynaptic pathway (Figure 2) [74]. Melatonin is
secreted exclusively at night and in direct proportion to
the dark portion of the light–dark cycle. It is the duration of
daily melatonin secretion, rather than its amplitude, that
encodes day length information. In hamsters, a long
duration melatonin signal (about 10 h per day, indicative
of a long night and short day) induces a short-day (SD)
‘winter’ phenotype (i.e. inhibited reproductive axis),
whereas a short duration melatonin signal (5–6 h per
day) induces a long-day (LD) ‘summer’ phenotype (i.e.
activated reproduction) (Figure 2) [75–77].

The neural mechanisms by which melatonin signals are
decoded and transmitted to the reproductive axis are
unknown, but melatonin does not appear to have direct
actions on GnRH neurons [78–81]. Little or no melatonin
binding is observed in forebrain regions that containGnRH
Figure 2. Species-specific effects of photoperiod and melatonin (MEL) on Kiss1 neuro
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neurons [82], suggesting that the regulatory actions of
melatonin are upstream of GnRH neurons. Autoradio-
graphic studies have identified several brain areas of
hamsters (Syrian and Siberian) that bind melatonin, most
notably, the SCN, pars tuberalis, paraventricular nucleus
of the thalamus, nucleus reuniens, and the medial-basal
hypothalamus (includes the ARC and dorsomedial regions)
[82]; however, it remains ambiguous where and how mel-
atonin signals are decoded and transmitted to GnRH
neurons.

Because kisspeptins are integral to the regulation of
GnRH activity, it seems plausible that the photoperiodic
control of reproduction involves direct or indirect modu-
lation of the Kiss1 system. Recently, Kiss1 mRNA and
kisspeptin protein levels were reported to be decreased
in the ARC of SD Syrian hamsters, correlating with
decreased reproductive activity (Figure 2) [83]. In Syrian
hamsters, melatonin receptors are located in the ARC and
dorsal–medial hypothalamus, suggesting that the actions
of melatonin on Kiss1 neurons in the ARC could be direct.
However, it is also conceivable that ARCKiss1 neurons are
indirectly regulated by melatonin via projections from
other melatonin-responsive sites. In contrast to the find-
ings in Syrian hamsters, kisspeptin immunoreactivity in
Siberian hamsters appears to be upregulated in the ARC of
SD animals [19]. Considering differences in the neural
sites of action of melatonin between Syrian and Siberian
ns in the arcuate nucleus. Photoperiod information is received by the retina and

en directs the secretion of pineal MEL by way of an indirect, multisynaptic pathway.

n MEL signals are indicative of long days (LD; summer). (a) Syrian hamsters are LD
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eding season (SD in Syrian hamsters, LD in sheep). An inhibition of the ARC Kiss1

biting the reproductive axis. It remains to be determined whether the effects of MEL

stimulates Kiss1 expression in the ARC of one species (sheep) but inhibits it in the
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hamsters [74], species differences in the organization or
regulation of the Kiss1 system might account for the con-
tradictory results. However, many published accounts of
kisspeptin protein levels (as reflected by ICC) have involved
different kisspeptin antisera, which in many cases lack
specificity for kisspeptin and might therefore confound
interpretation of the results. It is also conceivable that
elevated kisspeptin immunoreactivity in the ARC of SD
Siberian hamsters reflects increased storage (decreased
release) ofkisspeptinprotein.This explanationwould recon-
cile the apparently incongruous finding of increased levels
of kisspeptin (which is stimulatory to the reproductive
axis) during SDs (when reproduction is inhibited).

In contrast to hamsters, which breed in LDs, sheep are
SD seasonal breeders. Thus, SDs stimulate the ovine
GnRHaxis whereas LDs inhibit it (Figure 2). Interestingly,
Kiss1 expression in the ARC of ovariectomized ewes
increases during the transition between the anestrous,
non-breeding season and the breeding season [32], reminis-
cent of findings in Syrian hamsters [83]. Autoradiographic
studies have revealed that, in sheep, melatonin binds in
many brain areas, including the pars tuberalis, POA, and
the ventromedial and dorsomedial nuclei [84,85]; however,
little melatonin binding is observed in the ovine ARC,
suggesting an indirect effect of melatonin on ARC Kiss1
neurons. Notwithstanding, a kisspeptin-mediated mechan-
ism for regulating seasonal reproduction might exist in all
photoperiodic mammals (Figure 2), although themanner in
which the same photoperiodic signal (long melatonin
duration) produces the opposite effect on Kiss1 expression
in SD and LD breeders warrants further investigation.

Conclusions and future perspectives
Recent investigations in many species have yielded a
wealth of information detailing the role of kisspeptin–
GPR54 signaling in the regulation of reproduction, in-
cluding its involvement in sexual differentiation of the
brain, onset of puberty, regulation of estrous cyclicity
and the LH surge, and seasonal reproduction. Despite
these advances, many challenges remain. Among these
are: (i) mapping the afferent and efferent connections of
the different populations of Kiss1 neurons, in the mouse,
rat, sheep and primate; (ii) dissecting the molecular mech-
anisms that explain how estradiol can induce the expres-
sion of Kiss1 in the AVPV and inhibit its expression in the
ARC; (iii) learning how sex steroids influence the devel-
opment of Kiss1 neurons in the forebrain; (iv) understand-
ing the role of kisspeptin–GPR54 signaling in timing the
onset of puberty; and (v) revealing the functional signifi-
cance of co-transmitters in discrete populations of Kiss1
neurons (e.g. dynorphin in the ARC).
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